194 research outputs found

    Cleaning up Eta Carinae: Detection of Ammonia in the Homunculus

    Get PDF
    We report the first detection of ammonia in the Homunculus nebula around eta Carinae, which is also the first detection of emission from a polyatomic molecule in this or any other luminous blue variable (LBV) nebula. Observations of the NH3 (J,K)=(3,3) inversion transition made with the Australia Telescope Compact Array reveal emission at locations where infrared H2 emission had been detected previously, near the strongest dust emission in the core of the Homunculus. We also detect ammonia emission from the so-called ``strontium filament'' in the equatorial disk. The presence of NH3 around eta Car hints that molecular shells around some Wolf-Rayet stars could have originated in prior LBV eruptions, rather than in cool red supergiant winds or the ambient interstellar medium. Combined with the lack of any CO detection, NH3 seems to suggest that the Homunculus is nitrogen rich like the ionized ejecta around eta Car. It also indicates that the Homunculus is a unique laboratory in which to study unusual molecule and dust chemistry, as well as their rapid formation in a nitrogen-rich environment around a hot star. We encourage future observations of other transitions like NH3 (1,1) and (2,2), related molecules like N2H+, and renewed attempts to detect CO.Comment: 4 pages, accepted to ApJ letter

    High Mass Starless Cores

    Full text link
    We report the identification of a sample of potential High-Mass Starless Cores (HMSCs). The cores were discovered by comparing images of the fields containing candidate High-Mass Protostellar Objects (HMPOs) at 1.2mm and mid-infrared (8.3um; MIR) wavelengths. While the HMPOs are detected at both wavelengths, several cores emitting at 1.2mm in the same fields show absorption or no emission at the MIR wavelength. We argue that the absorption is caused by cold dust. The estimated masses of a few 10^2Msun - 10^3 Msun and the lack of IR emission suggests that they may be massive cold cores in a pre-stellar phase, which could presumably form massive stars eventually. Ammonia (1,1) and (2,2) observations of the cores indicate smaller velocity dispersions and lower rotation temperatures compared to HMPOs and UCHII regions suggesting a quiescent pre-stellar stage. We propose that these newly discovered cores are good candidates for the HMSC stage in high-mass star-formation. This sample of cores will allow us to study the high-mass star and cluster formation processes at the earliest evolutionary stages.Comment: 7 pages, 3 figures, 1 table, to be published in ApJL, author names replaced with comma separatio

    F-GAMMA: Variability Doppler factors of blazars from multiwavelength monitoring

    Get PDF
    Recent population studies have shown that the variability Doppler factors can adequately describe blazars as a population. We use the flux density variations found within the extensive radio multi-wavelength datasets of the F-GAMMA program, a total of 10 frequencies from 2.64 up to 142.33 GHz, in order to estimate the variability Doppler factors for 58 Îł\gamma-ray bright sources, for 20 of which no variability Doppler factor has been estimated before. We employ specifically designed algorithms in order to obtain a model for each flare at each frequency. We then identify each event and track its evolution through all the available frequencies for each source. This approach allows us to distinguish significant events producing flares from stochastic variability in blazar jets. It also allows us to effectively constrain the variability brightness temperature and hence the variability Doppler factor as well as provide error estimates. Our method can produce the most accurate (16\% error on average) estimates in the literature to date.Comment: 9 pages, 7 figures, accepted for publication in MNRA

    Radio jet emission from GeV-emitting narrow-line Seyfert 1 galaxies

    Get PDF
    We studied the radio emission from four radio-loud and gamma-ray-loud narrow-line Seyfert 1 galaxies. The goal was to investigate whether a relativistic jet is operating at the source, and quantify its characteristics. We relied on the most systematic monitoring of such system in the cm and mm radio bands which is conducted with the Effelsberg 100 m and IRAM 30 m telescopes and covers the longest time-baselines and the most radio frequencies to date. We extract variability parameters and compute variability brightness temperatures and Doppler factors. The jet powers were computed from the light curves to estimate the energy output. The dynamics of radio spectral energy distributions were examined to understand the mechanism causing the variability. All the sources display intensive variability that occurs at a pace faster than what is commonly seen in blazars. The flaring events show intensive spectral evolution indicative of shock evolution. The brightness temperatures and Doppler factors are moderate, implying a mildly relativistic jet. The computed jet powers show very energetic flows. The radio polarisation in one case clearly implies a quiescent jet underlying the recursive flaring activity. Despite the generally lower flux densities, the sources appear to show all typical characteristics seen in blazars that are powered by relativistic jets.Comment: Accepted for publication in 4 - Extragalactic astronomy of Astronomy and Astrophysic

    Turbulent Flow-Driven Molecular Cloud Formation: A Solution to the Post-T Tauri Problem?

    Get PDF
    We suggest that molecular clouds can be formed on short time scales by compressions from large scale streams in the interstellar medium (ISM). In particular, we argue that the Taurus-Auriga complex, with filaments of 10-20 pc ×\times 2-5 pc, most have been formed by H I flows in â‰Č3\lesssim 3Myr, explaining the absence of post-T Tauri stars in the region with ages ≳3\gtrsim 3 Myr. Observations in the 21 cm line of the H I `halos' around the Taurus molecular gas show many features (broad asymmetric profiles, velocity shifts of H I relative to 12^{12}CO) predicted by our MHD numerical simulations, in which large-scale H I streams collide to produce dense filamentary structures. This rapid evolution is possible because the H I flows producing and disrupting the cloud have much higher velocities (5-10 kms) than present in the molecular gas resulting from the colliding flows. The simulations suggest that such flows can occur from the global ISM turbulence without requiring a single triggering event such as a SN explosion.Comment: 26 pages, 12 ps figures. Apj accepte

    86 GHz polarimetry of OVV1633+382 after a major mm flare

    Full text link
    The 18 mag QSO 1633+382 (4C38.41, z=1.807) showed a very pronounced outburst in 2001/2002. With a peak amplitude of more than 9 Jy at 90GHz, this flare was brighter than any known previous flare in this source (data available since 1980).During onset, the mm-flare was particulary fast, with an increase of more than 2 Jy at 230 GHz in less than 8 days. Since January 2002, the mm-flux of 1633+382 is decaying. During this decline, however, local flux variations with amplitudes of 1-3 Jy were seen, indicative of underlying and more rapid source activity on time scales of 1-2 months. After the main peak occurring in 2001.99, the 90 GHz flux showed secondary maxima at approximately half year intervals in 2002.3, 2002.7 and 2003.13. This kind of periodicity might be explained via the lighthouse model (Camenzind and Krockenberger 1992), which is based on the magnetic accelerator of Blanford and Payne (1982). At present the millimeter flux is nearly back to its quiescent level of 2-2.5 Jy, which the source had before the flare began. Our VLBA Polarimetry monitoring started June 2002 during the onset of the flare. At cm wavelength, the flare is only marginally detected which implies very high opacity of the source.Comment: 4 pages. 5 figures. Proceedings of the 7th European VLBI Network Symposium held in Toledo, Spain on October 12-15, 2004. Editors: R. Bachiller, F. Colomer, J.-F. Desmurs, P. de Vicente (Observatorio Astronomico Nacional), p. 85-88. Needs evn2004.cl

    On the phenomenological classification of continuum radio spectra variability patterns of Fermi blazars

    Full text link
    The F-GAMMA program is a coordinated effort to investigate the physics of Active Galactic Nuclei (AGNs) via multi-frequency monitoring of {\em Fermi} blazars. The current study is concerned with the broad-band radio spectra composed of measurement at ten frequencies between 2.64 and 142 GHz. It is shown that any of the 78 sources studied can be classified in terms of their variability characteristics in merely 5 types of variability. The first four types are dominated by spectral evolution and can be reproduced by a simple two-component system made of the quiescent spectrum of a large scale jet populated with a flaring event evolving according to Marscher & Gear (1985). The last type is characterized by an achromatic change of the broad-band spectrum which must be attributed to a completely different mechanism. Here are presented, the classification, the assumed physical system and the results of simulations that have been conducted.Comment: 2011 Fermi Symposium proceedings - eConf C11050
    • 

    corecore